Тема 4. Действия неработающего населения МО городской округ «Охинский» при аварии, катастрофе и пожаре

Цели:

- 1. Ознакомление населения с основными требованиями охраны труда и техники безопасности.
 - 2. Ознакомление населения с основными требованиями пожарной безопасности.
- 3. Формирование у неработающего населения практических навыков по действиям при обнаружении задымления и возгорания, а также по сигналам оповещения о пожаре и эвакуации.

Методическая литература и учебные пособия:

- Федеральный закон от 21 декабря 1994 г. № 68-ФЗ «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера».
- Федеральный закон от 12 февраля 1998 г. № 28-ФЗ «О гражданской обороне».
- Обучение работающего населения в области гражданской обороны и защиты от чрезвычайных ситуаций. -М.: Институт риска и безопасности, 2015. -336 с.
- Гражданская оборона и защита от чрезвычайных ситуаций для работающего населения: Пособие для самостоятельного изучения. 2-е издание, переработанное и дополненное. -Москва: ООО «ТЕРМИКА.РУ», 2016.-392 с;
- Организация и ведение гражданской обороны и защиты населения и территорий от чрезвычайных ситуаций природного и техногенного характера: Учебное пособие / Под общ. ред. Г. Н. Кириллова. -8-е изд. -М.: Институт риска и безопасности, 2013. -536 с;
- Проведение занятий с работающим населением в области ГО, защиты от ЧС по пожарной безопасности и безопасности людей на водных объектах. Учебно-методическое пособие для руководителей занятий. М.: ИРБ, 2011;
- Организация защиты от террористических актов, взрывов, пожаров, эпидемий и вызванных ими чрезвычайных ситуаций: Практическое пособие/Под ред. М.И. Камышанского. -2-е изд., -М: Институт риска и безопасности, 2011. -512 с;
- Современное оружие. Опасности, возникающие при его применении. М.: Военные знания.
- Кульпинов С.В., Перевощиков В.Я., Твердохлебов Н.В. Курсовое обучение работающего населения в области гражданской обороны и защиты от чрезвычайных ситуаций. М.: Институт риска и безопасности, 2017. 320 с.
- Учебный фильм «Средства и способы защиты населения».

Вводная часть

Введение: Современное производство постоянно усложняется. В нем все чаще применяют ядовитые и агрессивные компоненты. На различных видах транспорта перевозят большое количество химически, пожаро и взрывоопасных веществ. Все это увеличивает вероятность возникновения и тяжесть аварий.

Государственный стандарт Российской Федерации определяет аварию как опасное техногенное происшествие, создающее на объекте, определенной территории или акватории угрозу жизни и здоровью людей и приводящее к разрушению зданий, сооружений, оборудования и транспортных средств, нарушению производственного или транспортного процесса, а также нанесению ущерба окружающей среде.

Крупную аварию, повлекшую за собой человеческие жертвы, значительный материальный ущерб и другие тяжелые последствия, называют производственной (или транспортной) катастрофой.

Производственные аварии и катастрофы относят к ЧС техногенного характера. Аварии и катастрофы по характеру их проявления подразделяют на несколько групп.

Транспортные аварии (катастрофы) могут быть двух видов: происходящие на производственных объектах, не связанных непосредственно с перемещением транспортных средств (в депо, на станциях, в портах, на аэровокзалах), и случающиеся во время их движения. Для второго вида аварий характерны удаленность ЧС от крупных населенных пунктов, трудность доставки туда спасательных формирований и большая численность пострадавших, нуждающихся в срочной медицинской помощи.

Пожары и взрывы - самые распространенные ЧС. Наиболее часто и, как правило, с тяжелыми социальными и экономическими последствиями они происходят на пожаро и взрывоопасных объектах. Это прежде всего промышленные предприятия, использующие в производственных процессах взрывчатые и легко возгораемые вещества, а также железнодорожный и трубопроводный транспорт, несущий наибольшую нагрузку по перемещению пожаро - и взрывоопасных грузов.

Аварии с выбросом (угрозой выброса) аварийно химически опасных веществ (AXOB) - это происшествия, связанные с утечкой вредных химических продуктов в процессе их производства, хранения, переработки и транспортировки.

Аварии с выбросом (угрозой выброса) радиоактивных веществ возникают на радиационно опасных объектах: атомных станциях, предприятиях по изготовлению и переработке ядерного топлива, захоронению радиоактивных отходов и др.

Аварии с выбросом (угрозой выброса) биологически опасных веществ - не частое явление, объясняемое, по-видимому, строгой засекреченностью работ в этой области и в то же время продуманностью мер по предупреждению возникновения таких ЧС. Однако, учитывая тяжесть последствий в случае попадания биологически опасных веществ в окружающую среду, такие аварии наиболее опасны для населения.

Внезапные обрушения зданий, сооружений чаще всего происходят не сами по себе, а вызываются побочными факторами: большим скоплением людей на ограниченной площади; сильной вибрацией, вызванной проходящими железнодорожными составами или большегрузными автомобилями; чрезмерной нагрузкой на верхние этажи зданий и т. д.

Аварии на электроэнергетических системах и коммунальных системах жизнеобеспечения редко приводят к гибели людей. Однако они существенно затрудняют жизнедеятельность населения (особенно в холодное время года), могут стать причиной серьезных нарушений и даже приостановки работы объектов промышленности и сельского хозяйства.

Аварии на промышленных очистных сооружениях приводят не только к резкому отрицательному воздействию на обслуживающий персонал этих объектов и жителей близлежащих населенных пунктов, но и к залповым выбросам отравляющих, токсических и просто вредных веществ в окружающую среду.

Гидродинамические аварии возникают в основном при разрушении (прорыве) гидротехнических сооружений, чаще всего плотин. Их последствия - повреждение и выход из строя гидроузлов, других сооружений, поражение людей, затопление обширных территорий.

Аварии с выбросом аварийно химически опасных веществ и их последствия.

Предприятия, использующие в производственных процессах различные вещества, опасны для населения, проживающего рядом с ними, и окружающей природной среды, поскольку на них могут возникнуть аварийные ситуации, при которых возможен выброс в атмосферу токсичных продуктов.

Для нужд аварийно-спасательного дела используется понятие аварийно химически опасное вещество (АХОВ). Согласно ГОСТ Р 22.9.05-95 АХОВ представляет собой опасное химическое вещество, применяемое в промышленности и сельском хозяйстве, при аварийном выбросе (разливе) которого может произойти заражение окружающей среды в концентрациях, поражающих живой организм.

По характеру воздействия на человеческий организм АХОВ подразделяют на шесть групп.

Крупнейшие потребители АХОВ: черная и цветная металлургия (хлор, аммиак, соляная кислота, ацетонциангидрин, водород фтористый, нитрил акриловой кислоты); целлюлознобумажная промышленность (хлор, аммиак, сернистый ангидрид, сероводород, соляная кислота); машиностроительная и оборонная промышленности (хлор, аммиак, соляная кислота, водород фтористый); коммунальное хозяйство (хлор, аммиак); медицинская промышленность (аммиак, хлор, фосген, нитрил акриловой кислоты, соляная кислота); сельское хозяйство (аммиак,

хлорпикрин, хлорциан, сернистый ангидрид). Объекты пищевой, в частности молочной, промышленности, торговые базы, оснащенные холодильниками, - крупные потребители аммиака, используемого в качестве хладагента. В число этих потенциально опасных предприятий входят и такие, на первый взгляд безобидные, как кондитерские фабрики, пивные заводы, мясокомбинаты, станции водоочистки, овощные базы. Широко используют аммиак и в сельском хозяйстве. Тысячи тонн АХОВ ежедневно перевозят различными видами транспорта, перекачивают по трубопроводам. Все названные объекты экономики химически опасны. К сожалению, аварии на них случаются часто, а их масштабы сравнимы со стихийными бедствиями.

Несмотря на все принимаемые меры по обеспечению безопасности, полностью исключить вероятность возникновения химических аварий невозможно.

Химическая авария – авария на химически опасном объекте, сопровождающаяся разливом или выбросом АХОВ, способным привести к гибели или заражению людей, продовольствия, пищевого сырья и кормов, сельскохозяйственных животных и растений или окружающей природной среды.

Наибольшую опасность по наличию и количеству AXOB и, следовательно, по возможности заражения ими атмосферы и местности представляют районы страны.

Последствия аварий на химически опасных объектах. В результате аварий возможны заражение окружающей среды и массовые поражения людей, животных и растений. В связи с этим для защиты персонала и населения при авариях рекомендуется:

- использовать индивидуальные средства защиты и убежища с режимом полной изоляции;
 - эвакуировать людей из зоны заражения, возникшей при аварии;
 - применять антидоты и средства обработки кожных покровов;
 - соблюдать режимы поведения (защиты) на зараженной территории;
- проводить санитарную обработку людей, дегазацию одежды, территории сооружений, транспорта, техники и имущества.

Население, проживающее вблизи химически опасных объектов, должно знать свойства, отличительные признаки и потенциальную опасность AXOB, используемых на данном объекте, способы индивидуальной защиты от поражения AXOB, уметь действовать при возникновении аварии, оказывать первую медицинскую помощь пострадавшим.

Основным способом оповещения населения об авариях с выбросом (выливом) АХОВ является передача речевой информации через местную теле - и радиовещательную сеть. Также для сообщения об авариях используется установленный сигнал «Внимание всем!», при котором включаются электросирены, дублируемые производственными гудками и другими сигнальными средствами. Услышав этот сигнал, население обязано включить радио - и телевизионные приемники и прослушать речевое сообщение о ЧС и необходимых действиях.

Население, проживающее вблизи химически опасных объектов, при авариях с выбросом АХОВ, услышав информацию, передаваемую по радио, телевидению, через подвижные громкоговорящие средства или другими способами, должно надеть средства защиты органов дыхания, закрыть окна и форточки, отключить электронагревательные и бытовые приборы, газ, погасить огонь в печах, одеть детей, взять при необходимости теплую одежду и питание (трехдневный запас непортящихся продуктов), предупредить соседей, быстро, но без паники выйти из жилого массива в указанном направлении или в сторону, перпендикулярную направлению ветра, желательно на возвышенный, хорошо проветриваемый участок местности, на расстояние не менее 1,5 км от места проживания, где находиться до получения дальнейших распоряжений.

Производственный персонал химического предприятия, на котором произошла авария, действует в соответствии с планами ликвидации аварий, а также указаниями диспетчера (дежурного) по предприятию, который должен четко и ясно сообщить, что произошло, где и какие меры защиты следует предпринять в данной ситуации.

Для защиты органов дыхания следует надеть противогаз. При его отсутствии необходимо немедленно выйти из зоны поражения, использовав при этом в качестве защитных средств ватно-марлевые повязки, подручные изделия из ткани, смоченные водой.

Если путей отхода нет, рекомендуется укрыться в помещении и загерметизировать его. При этом нужно помнить, что AXOB тяжелее воздуха будут проникать в подвальные помещения и нижние этажи зданий, низины и овраги, а AXOB легче воздуха - заполнять более высокие этажи зданий.

При движении на зараженной местности необходимо строго соблюдать следующие правила:

- двигаться быстро, но не бежать и не поднимать пыли;
- не прислоняться к зданиям и не касаться окружающих предметов;
- не наступать на встречающиеся на пути капли жидкости или порошкообразные россыпи неизвестных веществ;
 - не снимать средства индивидуальной защиты до распоряжения;
- при обнаружении капель AXOB на коже, одежде, обуви, средствах индивидуальной защиты удалять их тампоном из бумаги, ветоши или носовым платком; по возможности зараженное место промывать водой;
- оказывать помощь пострадавшим детям, престарелым, не способным двигаться самостоятельно.

Выйдя из зоны заражения, промойте глаза и открытые участки тела водой, примите обильное теплое питье (чай, молоко и т. п.) и обратитесь за помощью к медицинскому работнику для определения степени поражения и проведения профилактических и лечебных мероприятий.

Об устранении опасности химического поражения и о порядке дальнейших действий население извещается специально уполномоченными органами или милицией. Надо помнить, что при возвращении населения в места постоянного проживания вход в жилые и другие помещения, подвалы, а также производственные здания разрешается только после контрольной проверки на содержание АХОВ в воздухе.

В зависимости от физического состояния химического вещества, его концентрации в окружающей и внутренней (организме) средах у человека могут быть поражены печень, почки, сердце, легкие, нервная система и головной мозг.

Из большинства разнообразных признаков химического отравления отметим лишь наиболее характерные: появление чувства страха, общее возбуждение, эмоциональная неустойчивость, нарушение сна, раздражение глаз, слизистой носа и гортани, покраснение кожи, рвота, тошнота, появление неестественного, специфического запаха. Действие химических веществ наступает даже при очень малых дозах. Их разрушающее влияние сказывается на всех людях.

Общими принципами неотложной помощи при поражениях АХОВ являются:

- прекращение дальнейшего поступления яда в организм и удаление невсосавшегося;
- ускоренное выведение из организма всосавшихся ядовитых веществ;
- восстановление и поддержание жизненно важных функций организма.

Взрывы и их последствия. Действия населения при взрывах.

Взрыв — это происходящее внезапно (стремительно, мгновенно) событие, при котором возникает кратковременный процесс превращения вещества с выделением большого количества энергии в ограниченном объеме.

Масштабы последствий взрывов зависят от их мощности и среды, в которой они происходят. Радиусы зон поражения могут доходить до нескольких километров. Различают три зоны действия взрыва.

Зона I - действие детонационной волны. Для нее характерно интенсивное дробящее действие, в результате которого конструкции разрушаются на отдельные фрагменты, разлетающиеся с большими скоростями от центра взрыва.

Зона II - действие продуктов взрыва. В ней происходит полное разрушение зданий и сооружений под действием расширяющихся продуктов взрыва. На внешней границе этой зоны образующаяся ударная волна отрывается от продуктов взрыва и движется самостоятельно от центра взрыва. Исчерпав свою энергию, продукты взрыва, расширившись до плотности, соответствующей атмосферному давлению, не производят больше разрушительного лействия.

Зона III - действие воздушной ударной волны. Эта зона включает три подзоны: III а - сильных разрушений, III б - средних разрушений, III в - слабых разрушений. На внешней границе зоны III ударная волна вырождается в звуковую, слышимую на значительных расстояниях.

Причины взрывов.

На взрывоопасных предприятиях чаще всего к причинам взрывов относят: разрушения и повреждения производственных емкостей, аппаратуры и трубопроводов; отступление от установленного технологического режима (превышение давления и температуры внутри производственной аппаратуры и др.); отсутствие постоянного контроля за исправностью производственной аппаратуры и оборудования и своевременностью проведения плановых ремонтных работ.

Большую опасность для жизни и здоровья людей представляют взрывы в жилых и общественных зданиях, а также в общественных местах. Главная причина таких взрывов — неразумное поведение граждан, прежде всего детей и подростков. Наиболее частое явление — взрыв газа. Однако в последнее время получили распространение случаи, связанные с применением взрывчатых веществ, и прежде всего - террористические акты.

Для нагнетания страха террористы могут организовать взрыв, установив взрывные устройства в самых неожиданных местах (подвалах, арендуемых помещениях, снимаемых квартирах, припаркованных автомобилях, туннелях, метро, в городском транспорте и т. п.) и использовав как промышленные, так и самодельные взрывные устройства. Опасен не только сам взрыв, но и его последствия, выражающиеся, как правило, в обрушении конструкций и зданий.

Об опасности взрыва можно судить по следующим признакам: наличие неизвестного свертка или какой-либо детали в машине, на лестнице, в квартире и т. д.; натянутая проволока, шнур; провода или изолирующая лента, свисающие из-под машины; чужая сумка, портфель, коробка, какой-либо предмет, обнаруженный в машине, у дверей квартиры, в метро. Поэтому, заметив взрывоопасный предмет (самодельное взрывное устройство, гранату, снаряд, бомбу и т. п.), не подходите к нему близко, немедленно сообщите о находке в милицию, не позволяйте случайным людям прикасаться к опасному предмету и обезвреживать его.

Действие взрыва на здания, сооружения, оборудование.

Наибольшим разрушениям продуктами взрыва и ударной волной подвергаются здания и сооружения больших размеров с легкими несущими конструкциями, значительно возвышающиеся над поверхностью земли. Подземные и заглубленные в грунт сооружения с жесткими конструкциями обладают значительной сопротивляемостью разрушению.

Степень разрушения зданий и сооружений можно представить в следующем виде:

- полное обрушены перекрытия и разрушены все основные несущие конструкции; восстановление невозможно;
- сильное имеются значительные деформации несущих конструкций; разрушена большая часть перекрытий и стен;
- среднее разрушены главным образом не несущие, а второстепенные конструкции (легкие стены, перегородки, крыши, окна, двери); возможны трещины в наружных стенах; перекрытия в подвале не разрушены; в коммунальных и энергетических сетях значительные разрушения и деформации элементов, требующие устранения;
- слабое разрушена часть внутренних перегородок, заполнения дверных и оконных проемов; оборудование имеет значительные деформации; в коммунальных и энергетических сетях разрушения и поломки конструктивных элементов незначительны.

Действие взрыва на человека.

Продукты взрыва и образовавшаяся в результате их действия воздушная ударная волна способны наносить человеку различные травмы, в том числе смертельные. Так, в зонах I и II наблюдается полное поражение людей, связанное с разрывом тела на части, его обугливанием под действием расширяющихся продуктов взрыва, имеющих весьма высокую температуру. В зоне III поражение вызывается как непосредственным, так и косвенным воздействием ударной волны.

При непосредственном воздействии ударной волны — основной причиной травм у людей является мгновенное повышение давления воздуха, что воспринимается человеком как резкий удар. При этом возможны повреждения внутренних органов, разрыв кровеносных сосудов, барабанных перепонок, сотрясение мозга, различные переломы и т. п. Кроме того, скоростной напор воздуха может отбросить человека на значительное расстояние и причинить ему при ударе о землю (или препятствие) повреждения. Метательное действие такого напора заметно сказывается в зоне с избыточным давлением более 50 кПа (0,5 кгс/см 2), где скорость перемещения воздуха более 100 м/с, что значительно выше, чем при ураганном ветре.

Характер и тяжесть поражения людей зависят от величины параметров ударной волны, положения человека в момент взрыва, степени его защищенности. При прочих равных условиях наиболее тяжелые поражения получают люди, находящиеся в момент прихода ударной волны вне укрытий в положении стоя. В этом случае площадь воздействия скоростного напора воздуха будет примерно в 6 раз больше, чем в положении человека лежа.

Поражения, возникающие под действием ударной волны, подразделяются на легкие, средние, тяжелые и крайне тяжелые (смертельные); их характеристики приведены ниже:

- легкое легкая контузия, временная потеря слуха, ушибы и вывихи конечностей;
- среднее травмы мозга с потерей сознания, повреждение органов слуха, кровотечение из носа и ушей, сильные переломы и вывихи конечностей;
- тяжелое сильная контузия всего организма, повреждение внутренних органов и мозга, тяжелые переломы конечностей; возможны смертельные исходы;
 - крайне тяжелое травмы, обычно приводящие к смертельному исходу.

Поражение людей, находящихся в момент взрыва в зданиях и сооружениях, зависит от степени их разрушения. Так, при полных разрушениях зданий следует ожидать полной гибели находящихся в них людей; при сильных и средних - может выжить примерно половина людей, а остальные получат травмы различной степени тяжести. Многие могут оказаться под обломками конструкций, а также в помещениях с заваленными или разрушенными путями эвакуации.

Косвенное воздействие ударной волны заключается в поражении людей летящими обломками зданий и сооружений, камнями, битым стеклом и другими предметами, увлекаемыми ею. При слабых разрушениях зданий гибель людей маловероятна, однако часть из них может получить различные травмы.

При угрозе взрыва в помещении опасайтесь падения штукатурки, арматуры, шкафов, полок. Держитесь подальше от окон, зеркал, светильников. Находясь на улице, отбегите на ее середину, площадь, пустырь, т. е. подальше от зданий и сооружений, столбов и линий электропередачи. Если вас заблаговременно оповестили об угрозе, прежде чем покинуть жилище или рабочее место, отключите электричество, газ. Возьмите необходимые вещи и документы, запас продуктов и медикаментов.

Если в вашей или соседней квартире произошел взрыв, а вы находитесь в сознании и в состоянии двигаться, попытайтесь действовать. Посмотрите, кому из людей, находящихся рядом с вами, нужна помощь. Если работает телефон, сообщите о случившемся по телефонам «01 », «02» и «03». Не старайтесь воспользоваться лестницей, а тем более лифтом, чтобы покинуть здание; они могут быть повреждены (разрушены). Покидать здание необходимо только в случае начавшегося пожара и при угрозе обрушения конструкций.

Если вас завалило упавшей перегородкой, мебелью, постарайтесь сами помочь себе и тем, кто придет на помощь; подавайте сигналы (стучите по металлическим предметам, перекрытиям), чтобы вас услышали и обнаружили. Делайте это при остановке работы спасательного оборудования (в «минуты тишины»). При получении травмы окажите себе посильную помощь. Устройтесь поудобней, уберите острые, твердые и колющие предметы, укройтесь. Если тяжелым предметом придавило какую-либо часть тела, массируйте ее для поддержания циркуляции крови. Ждите спасателей; вас обязательно найдут.

При повреждении здания взрывом, прежде чем входить в него, необходимо убедиться в отсутствии значительных разрушений перекрытий, стен, линий электро,- газо - и водоснабжения, а также утечек газа, очагов пожара.

Внезапное обрушение зданий, сооружений.

Внезапное обрушение здания - возникает по причине ошибок, допущенных при проектировании здания, отступлении от проекта при ведении строительных работ, нарушение правил монтажа, а также вследствие чрезвычайных ситуаций.

Действия при внезапном обрушении.

Услышав взрыв или обнаружив, что здание теряет свою устойчивость постарайтесь быстрее покинуть его, взяв документы, деньги и предметы первой необходимости. Покидая помещение не используйте лифт. Пресекайте панику, давку в дверях, останавливайте тех, кто стремиться прыгать с балконов и окон выше первого этажа. Оказавшись на улице, не стойте вблизи зданий, а перейдите на открытое пространство. Если нет возможности покинуть здание, займите самое безопасное место: проемы капитальных стен, углы образованные внутренними капитальными стенами под балками каркаса. Если возможно спрячьтесь под стол. Если с вами дети укройте их собой, откройте дверь квартиры, чтобы обеспечить себе выход из квартиры в случае необходимости. Держитесь подальше от окон, электроприборов, отключите газ, воду, электричество. При возникновении пожара постарайтесь потушить его, используйте телефон для того, чтобы сообщить о себе. Не выходите на балкон.

Действия в завале.

Дышите глубоко, не поддавайтесь панике, сосредоточьтесь на самом важном, пытайтесь выжить любой ценой, верьте помощь придет. По возможности окажите себе первую медицинскую помощь. Попытайтесь определить где вы находитесь, нет ли рядом людей, прислушайтесь, подайте голос. Помните, что человек способен выдержать жажду и голод в течение длительного времени, если не будет бесполезно расходовать энергию. Поищите в кармах или вокруг предметы, которые могли бы помочь подать световые и звуковые сигналы (зеркальце, фонарик, металлические предметы и т. п.), которыми можно постучать и привлечь к себе внимание.

Учебный вопрос 1. Основные требования охраны труда и соблюдения техники безопасности.

В процессе труда человека подстерегает множество опасностей, связанных с производственным циклом, условиями производственной среды, состоянием самого работника и с множеством других факторов, сопутствующих трудовой деятельности. Практика показывает, что потенциальные опасности не всегда реализуются, так как на производстве действует система обеспечения безопасности жизни и здоровья работников в процессе трудовой деятельности, носящая название охрана труда.

Охрана труда — это система правовых, социально-экономических, организационнотехнических, санитарно-гигиенических, лечебно-профилактических, реабилитационных и иных мероприятий, направленных на обеспечение безопасности, сохранение жизни и здоровья людей.

Техника безопасности — раздел охраны труда, в котором изучаются опасные производственные факторы и рассматриваются методы защиты от них.

При изучении проблематики техники безопасности следует придерживаться такой последовательности: сначала уяснить сущность, природу опасности, затем определить причины и возможные последствия проявления рассматриваемого опасного фактора и, наконец, изучить меры безопасности, предусматриваемые правилами, инструкциями и другими документами.

К защитным мерам от имеющих место на производстве опасных для здоровья факторов относятся:

- защита от механических опасностей;
- электробезопасность;
- безопасность эксплуатации сосудов, работающих под давлением;
- безопасность эксплуатации газового хозяйства;
- безопасность эксплуатации подъемно-транспортного оборудования.

Особое внимание уделяется мерам безопасности при работе с опасными грузами. К опасным грузам относятся вещества и предметы, которые при транспортировании, выполнении погрузочно-разгрузочных работ и хранении могут послужить причиной взрыва, пожара или повреждения транспортных средств, складов, устройств, зданий и

сооружений, а также гибели, увечья, ожогов, облучения или заболевания людей. Безопасность людей обеспечивается реализацией принципов информации, блокировки и др.

Опасные грузы делятся на 9 классов;

- класс 1 взрывчатые вещества, которые по своим свойствам могут взрываться, вызывать пожар с взрывчатым действием, а также устройства, содержащие взрывчатые вещества и средства взрывания, предназначенные для получения пиротехнического эффекта;
 - класс 2 газы сжатые, сжиженные и растворенные под давлением;
- класс 3-легковоспламеняющиеся жидкости, смеси жидкостей, а также жидкости, содержащие твердые вещества в растворе или суспензии, которые выделяют легковоспламеняющиеся пары;
- класс 4 легковоспламеняющиеся вещества и материалы (кроме классифицированных как взрывчатые), способные во время перевозки легко загораться от внешних источников воспламенения, в результате трения, поглощения влаги, самопроизвольных химических превращений, а также при нагревании;
- класс 5 окисляющие вещества и органические пероксиды, которые способны выделять кислород, поддерживать горение, а также могут в соответствующих условиях или в смеси с другими веществами вызвать самовоспламенение и взрыв;
- класс 6 ядовитые и инфекционные вещества, способные вызывать смерть, отравление или заболевание при попадании внутрь организма или при соприкосновении с кожей и слизистой оболочкой;
 - класс 7 радиоактивные вещества;
- класс 8 едкие и коррозионно-активные вещества, которые вызывают повреждение кожи, поражение слизистых оболочек глаза и дыхательных путей, коррозию металлов и повреждение транспортных средств, сооружений или грузов, а также могут вызывать пожар при взаимодействии с органическими материалами или некоторыми химическими веществами;
- класс 9 вещества с относительно низкой опасностью при транспортировании, не отнесенные ни к одному из предыдущих классов, но требующие применения к ним определенных правил перевозки и хранения.

На упаковке с опасным грузом в зависимости от характера опасности должны наноситься знаки опасности.

Защита от механических опасностей.

Характер механических опасностей зависит от особенностей производства и технологических процессов.

Механические опасности на предприятиях представляют собой движущиеся машины и механизмы, незащищенные подвижные элементы производственного оборудования, передвигающиеся изделия, заготовки, материалы, разрушающиеся конструкции, острые кромки, стружка, заусенцы и шероховатости на поверхности заготовок, инструментов и оборудования, а также падение предметов с высоты.

Пространство, в котором возможно воздействие на человека опасности (в том числе механической), называется опасной зоной. Определение границ опасных зон производится на основе соответствующих расчетов и допущений.

Средства защиты от механических опасностей делятся на средства индивидуальной защиты (СИЗ) и средства коллективной защиты (СКЗ).

К СИЗ относятся: изолирующие костюмы, средства защиты органов дыхания, специальная одежда, специальная обувь, средства защиты рук, средства защиты головы, средства защиты лица, средства защиты глаз, средства защиты органов слуха, средства защиты от падения с высоты и другие предохранительные средства, защитые дерматологические средства.

Средства коллективной защиты указаны на схеме. СКЗ от механических опасностей Оградительные Кожухи, дверцы, щиты, козырьки, устройства планки, барьеры, экраны Предохранительные Блокировочные, оградительные устройства Тормозные Колодочные, дисковые, конические, устройства клиновые, ленточные Устройства автома-Информационные, предупреждающие, тического контроля аварийные, отчетные и сигнализации Устройства дистанционного Стационарные, передвижные управления Запрещающие, предупреждающие, Знаки безопасности предписывающие, указательные

Средства коллективной защиты от механических опасностей

Электробезопасность - это система организационных и технических мероприятий и средств, обеспечивающих защиту людей и животных от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества (ГОСТ Р 12.1.009-2009).

Для обеспечения электробезопасности применяют отдельно или в сочетании следующие технические способы и средства защиты:

- недоступность токоведущих частей, находящихся под напряжением;
- электрическое разделение сети;
- малые напряжения;
- двойную изоляцию;
- выравнивание потенциалов;
- защитное заземление;
- зануление;
- защитное отключение и др.

К техническим способам и средствам также относятся предупредительная сигнализация, знаки безопасности, средства индивидуальной и коллективной защиты, предохранительные приспособления и др.

Недоступность токоведущих частей электроустановок для случайного прикосновения может быть обеспечена рядом способов: изоляцией токоведущих частей, ограждением, различными блокировками, размещением токоведущих частей на недоступном расстоянии.

Изоляция является основным способом электробезопасности в сетях до 1000 V, так как применение изолированных проводов обеспечивает достаточную защиту от напряжения при прикосновении к ним,

Ограждения в виде корпусов, кожухов, оболочек используются в электрических машинах, аппаратах, приборах. Сплошные ограждения являются обязательными для электроустановок, расположенных в местах, где бывает не электротехнический персонал (уборщицы и др.). Сетчатые ограждения с размерами ячеек 25х25 мм применяются в установках напряжением как ниже, так и выше 1000 V. В закрытых помещениях их высота должна быть не менее 1,7 м, а в открытых - не менее 2,0 м, чтобы исключить или сильно затруднить доступ к электроустановкам случайных лиц. Сетчатые ограждения имеют двери, запирающиеся на замок.

Расположение токоведущих частей на недоступной высоте или в недоступном месте позволяет обеспечить безопасность без ограждений. При этом учитывается возможность случайного прикосновения к токоведущим частям посредством длинных предметов, которые человек может держать в руках. Поэтому вне помещений неизолированные провода при напряжении до 1000 V должны быть расположены на высоте не менее 6 м, а внутри помещений не ниже 3,5 м.

Электрическое разделение сети - это способ, при котором сеть разделяется на отдельные электрически несвязанные между собой участки с помощью разделительных трансформаторов.

Эта мера защиты применяется в разветвленной электрической сети, которая имеет значительную емкость и соответственно небольшое сопротивление изоляции относительно земли. Эксплуатация таких сетей может оказаться опасной, так как в сетях напряжением до 1000 V с изолированной нейтралью снижается защитная рель изоляции проводов и усиливается опасность поражения человека электрическим током в случае прикосновения к токоведущим частям.

Опасность поражения можно резко уменьшить, если единую разветвленную сеть с большой емкостью и малым сопротивлением изоляции разделить на ряд небольших сетей такого же напряжения, которые будут обладать небольшой емкостью и высоким сопротивлением изоляции.

Область применения электрического разделения сетей - электроустановки до 1000V, эксплуатация которых связана с повышенной степенью опасности (передвижные электроустановки, ручной электрифицированный инструмент и т. п.).

Малое напряжение - это номинальное напряжение не более 42 V, применяемое в целях уменьшения опасности поражения электрическим током. Для повышения безопасности в условиях с повышенной опасностью и в особо опасных условиях для ручного электроинструмента (дрель, гайковерт и др.) применяется напряжение 42 V и ниже, а для ручных ламп 12 V. Кроме того, в шахтерских лампах и некоторых бытовых приборах применяются очень малые напряжения, вплоть до 2,5 V.

В качестве источников малого напряжения применяются понижающие трансформаторы, преобразователи частоты, батареи гальванических элементов, аккумуляторы, выпрямительные установки. Применение автотрансформаторов для этой цели недопустимо, так как в этом случае отсутствует гальваническая развязка с сетью.

Надежным средством защиты человека от поражения электрическим током является двойная изоляция, состоящая из основной и дополнительной. Основная (рабочая) электрическая изоляция токоведущих частей электроустановки обеспечивает нормальную ее работу и защиту от поражения электрическим током, а дополнительная (защитная) электрическая изоляция предусматривается дополнительно к основной изоляции для защиты от поражения электрическим током в случае ее повреждения.

Область применения двойной изоляции ограничивается электрооборудованием небольшой мощности - электрифицированным ручным инструментом, некоторыми переносными устройствами, бытовыми приборами и ручными электрическими лампами.

Выравнивание потенциалов - это способ снижения напряжения прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек.

Для равномерного распределения электрического потенциала на площадке, занятой электрическим оборудованием, применяются искусственные заземлители. Для этих целей на территории открытых распределительных устройств прокладывают заземляющие полосы на глубине 0,5 - 0,7 м вдоль рядов оборудования и в поперечном направлении, то есть образуется заземляющая сетка, к которой присоединяется заземляемое оборудование.

Выравнивание потенциалов используется, прежде всего, при эксплуатации установок выше 1000 V.

Наибольшее распространение среди технических мер защиты человека в сетях до 1000 V получили защитное заземление, зануление, защитное отключение.

Защитное заземление - это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоко - ведущих частей электроустановки, которые могут оказаться под напряжением.

Защитное действие заземления основано на снижении напряжения прикосновения при попадании напряжения на нетоко - ведущие части (вследствие замыкания на корпус или других

причин), что достигается уменьшением разности потенциалов между корпусом электроустановки и землей как из-за малого сопротивления заземления, так и повышения потенциала примыкающей к оборудованию поверхности земли. Чем меньше сопротивление заземления, тем выше защитный эффект.

Зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Защитное действие зануления состоит в следующем. При пробое изоляции на корпус образуется цепь с очень малым сопротивлением: фаза-корпус-нулевой провод-фаза. Следовательно, пробой на корпус при наличии зануления превращается в однофазное короткое замыкание. Возникающий в цепи ток резко возрастает, в результате чего срабатывает максимальная токовая защита и селективно отключает поврежденный участок сети.

Защитное отключение - это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении опасности поражения током. Такая опасность может возникнуть, в частности, при замыкании фазы на корпус электрооборудования, при снижении сопротивления изоляции фаз относительно земли ниже определенного предела, при появлении в сети более высокого напряжения, при прикосновении человека к токоведущей части, находящейся под напряжением.

Любой из этих параметров, а точнее, изменение его до определенного предела, при котором возникает опасность поражения человека током, может служить импульсом, вызывающим срабатывание защитно-отключающего устройства, то есть автоматическое отключение опасного участка цепи.

Защитное отключение может применяться в качестве единственной меры защиты в передвижных установках напряжением до 1000V, либо в сочетании с защитным занулением или заземлением.

Средства защиты, используемые в электроустановках.

В процессе эксплуатации электроустановок нередко возникают условия, при которых не обеспечивается безопасность работающего и требуется применение специальных средств защиты.

Такими средствами защиты, дополняющими стационарные конструктивные защитные устройства электроустановок, являются переносные приборы и приспособления, служащие для защиты персонала, работающего в электроустановках, от поражения током, от воздействия электрической дуги, продуктов горения, падения с высоты и т. п.

К электрозащитным средствам относятся: изолирующие штанги и клещи, электроизмерительные клещи, указатели напряжения, слесарно-монтажный инструмент с изолирующими рукоятками для работы в электроустановках напряжением до 1000V и изолирующие устройства и приспособления для ремонтных работ в электроустановках напряжением свыше 1000V, диэлектрические перчатки, боты, галоши, коврики, изолирующие накладки и подставки, индивидуальные экранирующие комплекты, переносные заземления, оградительные устройства и диэлектрические колпаки, плакаты и знаки безопасности.

Кроме электрозащитных средств для обеспечения безопасных и высокопроизводительных условий работы в действующих электроустановках, применяются другие СИЗ: очки, каски, рукавицы, противогазы, предохранительные монтерские пояса и страховочные канаты.

Средства защиты, используемые в электроустановках, по своему назначению подразделяются на две категории: основные и дополнительные.

Основные электрозащитные средства - это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением.

Дополнительные электрозащитные средства - это средства зашиты, дополняющие основные средства, а также служащие для защиты от напряжения прикосновения и напряжения шага, которые сами по себе не могут при данном напряжении обеспечить

защиту от поражения током, а применяются совместно с основными электрозащитными средствами.

Электрозащитные средства следует использовать по их прямому назначению и только в тех электроустановках, на напряжение которых они рассчитаны. Перед применением электрозащитных средств производятся проверка их исправности, осмотр на отсутствие внешних повреждений, очистка от пыли, проверка по штампу срока годности и напряжения, на которое рассчитано защитное средство. Перед применением диэлектрических перчаток необходимо убедиться в отсутствии проколов путем скручивания их в сторону пальцев. Основные электрозащитные средства могут применяться в закрытых электроустановках, а в открытых электроустановках и на воздушных линиях - только в сухую погоду. На открытом воздухе в сырую погоду могут быть применены только средства защиты, предназначенные для работы в этих условиях.

Все электрозащитные средства перед эксплуатацией проходят приемо-сдаточные испытания и периодически (через 6-36 месяцев) подвергаются контрольным осмотрам и эксплуатационным электрическим испытаниям повышенным напряжением.

Защита от статического электричества.

Устранение опасности возникновения электростатических зарядов достигается применением ряда мер: заземлением, повышением поверхностной проводимости диэлектриков, ионизацией воздушной среды, уменьшением электризации горючих жидкостей.

Заземление используется, прежде всего, для производственного оборудования и емкостей для хранения легковоспламеняющихся и горючих жидкостей. Оборудование считается электростатически заземленным, если сопротивление в любой его точке не превышает 106 ом. Сопротивление заземляющего устройства, предназначенного для защиты от статического электричества, не должно превышать 100 ом.

Поверхностная проводимость диэлектриков повышается при увеличении влажности воздуха или применении антистатических примесей. При относительной влажности воздуха 85% и более электростатических зарядов обычно не возникает. Антистатические вещества (графит, сажа) вводят в состав резинотехнических изделий, из которых изготовляют шланги для налива и перекачки легковоспламеняющихся жидкостей, что резко снижает опасность воспламенения этих жидкостей при переливании их в передвижные емкости (автоцистерны, железнодорожные цистерны). Металлические наконечники сливных шлангов во избежание проскакивания искр на землю или заземленные части оборудования дополнительно заземляют гибким медным проводником.

Ионизация воздуха приводит к увеличению его электропроводности, при этом происходит нейтрализация поверхностных зарядов ионами противоположного знака. Ионизация воздуха осуществляется воздействием на него высоковольтного электрического поля, образующего коронный разряд, либо воздействием источника радиоактивного излучения. Во многих случаях эффективнее применять комбинированные нейтрализаторы, представляющие совмещенный в одном устройстве радиоактивный и индукционный нейтрализаторы. Индукционный нейтрализатор состоит из несущей конструкции, на которой укреплены заземленные иглы. Под действием электрического поля, образованного зарядами наэлектризованного материала, около острия игл возникает ударная ионизация воздуха.

Уменьшение электризации горючих и легковоспламеняющихся жидкостей достигается повышением электропроводности жидкости, введением в нее антистатических добавок, снижением скорости движения жидкостей-диэлектриков.

Для защиты работающих от статического заряда, который может накапливаться на них за счет емкости тела, равной примерно 200-250 пФ, используют обувь с электропроводящей подошвой. Предусматриваются также электропроводящие полы. При работах сидя применяют статические халаты в сочетании с электропроводной подушкой стула или электропроводные браслеты, соединенные с заземляющим устройством через сопротивление 105-107 ом.

Защита от молний. Разряды атмосферного электричества способны вызвать взрывы, пожары и разрушения зданий и сооружений, а также поражение людей, что привело к необходимости разработки специальной системы молниезащиты.

Молниезащита - комплекс защитных устройств, предназначенных для обеспечения безопасности людей, сохранности зданий и сооружений, оборудования и материалов от разрядов молнии.

Молния способна воздействовать на здания и сооружения прямыми ударами (первичное воздействие), которые вызывают непосредственное повреждение и разрушение, и вторичными воздействиями - посредством явлений электростатической и электромагнитной индукции. Высокий потенциал, создаваемый разрядами молнии, может заноситься в здания также по воздушным линиям и различным коммуникациям. Канал главного разряда молнии имеет температуру 20 тыс. ⁰С и выше, что инициирует пожары и взрывы в зданиях и сооружениях.

Здания защищаются от прямых ударов молнии молниеотводами. Зоной защиты молниеотвода называют часть пространства, примыкающую к молниеотводу, внутри которого здание или сооружение защищено от прямых ударов молнии с определенной степенью надежности. Зона защиты А обладает степенью надежности 99,5% и выше, зона защиты Б—95% и выше.

Молниеотводы состоят из молниеприемников (воспринимающих на себя разряд молнии), заземлителей, служащих для отвода тока молнии в землю, и токоотводов, соединяющих молниеприемники с заземлителями.

Молниеотводы могут быть отдельно стоящими или устанавливаться непосредственно на здании или сооружении. По типу молниеприемника их подразделяют на стержневые, тросовые и комбинированные. В зависимости от числа действующих на одном сооружении молниеотводов их подразделяют на одиночные, двойные и многократные.

Безопасность эксплуатации сосудов, работающих под давлением.

К сосудам, работающим под давлением, условно относится оборудование, в котором давление значительно превышает атмосферное. К такому оборудованию относятся баллоны, паровые и водогрейные котлы, трубопроводы, компрессоры, цистерны, технологические емкости. Все это оборудование должно быть герметичным.

Несмотря на различие перечисленных объектов их объединяет присущая им основная опасность - возможность разрушения и взрыва. Поэтому их относят к объектам повышенной опасности и к ним предъявляются особые требования безопасности. Такие требования зафиксированы в соответствующих правилах и сводятся к следующим положениям:

- материалы, применяемые для изготовления сосудов, должны соответствовать особым техническим условиям;
- конструкция сосудов и процесс их изготовления должны соответствовать требованиям безопасности;
- сосуды после изготовления и периодически в процессе эксплуатации подлежат освидетельствованию и гидравлическим испытаниям;
- сосуды снабжаются приборами для измерения уровня жидкости, давления и температуры, предохранительными и запорными приспособлениями;
- определенная категория сосудов до пуска в работу должна быть зарегистрирована в органах Ростехнадзора и контролироваться инспекторами;
- на предприятии приказом назначаются лица, ответственные за эксплуатацию сосудов;
- для каждой группы сосудов (объектов) разрабатываются правила безопасной эксплуатации и др.

Для безопасной эксплуатации сосудов, работающих под давлением, их оборудуют приборами безопасности и контрольно-измерительными приборами (предохранительные клапаны, указатели уровня жидкости, манометры, приборы для измерения температуры внутренней среды, устройства автоматики отключения).

Безопасность эксплуатации газового хозяйства.

Газовое хозяйство предприятия (организации) включает в себя газопроводы, установки сжиженных углеводородных газов, сооружения на газопроводах, средства защиты от электрохимической коррозии, газооборудование газифицированных производств, котельных и других зданий, размещенных на территории организации.

При эксплуатации объектов газового хозяйства организация обязана:

- выполнять комплекс мероприятий, включая систему технического обслуживания и ремонта, обеспечивающего содержание газового хозяйства в исправном состоянии;
- иметь требуемый по штату персонал, удовлетворяющий квалификационным требованиям, не имеющий медицинских противопоказаний к работе;
 - проводить своевременную подготовку и аттестацию работников;
- иметь правовые акты и нормативные технические документы (правила, положения и инструкции), устанавливающие порядок ведения работ в газовом хозяйстве;
- организовывать и осуществлять производственный контроль за соблюдением требований промышленной безопасности;
- обеспечивать наличие и функционирование необходимых приборов и систем контроля;
- обеспечивать защиту объектов газового хозяйства от проникновения и несанкционированных действий посторонних лиц;
- принимать участие в техническом расследовании причин аварий, принимать меры по их устранению, профилактике и учету аварий.

Безопасность эксплуатации подъемно-транспортного оборудования.

Подъемно-транспортное оборудование (ПТО) отличается большим разнообразием. Каждый класс ПТО имеет свои особенности с точки зрения безопасности. Объединяющими признаками являются значительные мощности, большие скорости элементов ПТО, масса и размеры. Этим объясняется повышенная потенциальная опасность ПТО.

ПТО делится на машины периодического и непрерывного транспортирования грузов. Периодическое транспортирование осуществляется с помощью рельсового и безрельсового транспорта. К рельсовому транспорту относятся мостовые, козловые (портальные) краны, тепловозы, электровозы, вагонетки и др. Безрельсовым транспортом являются автопогрузчики, автокраны, автотележки и др. Непрерывное транспортирование грузов осуществляется горизонтально (конвейеры) или вертикально (элеваторы).

Основные опасности, возникающие при эксплуатации ПТО:

- движущиеся элементы;
- падение груза с высоты;
- разрушение металлоконструкций;
- потеря устойчивости и падение кранов и др.

Безопасность людей при работе ПТО обеспечивается реализацией следующих принципов: активности оператора, информации, блокировки, недоступности, несовместимости, защиты расстоянием, прочности, слабого звена и др. С этой целью проводятся следующие расчеты:

- расчет на прочность канатов крана и грузозахватного устройства;
- подбор тормозов;
- определение устойчивости кранов;
- расчет металлоконструкции кранов при воздействии статических и динамических нагрузок, технологических, ветровых перегрузках, обледенении;
 - определение опасной зоны при работе подъемно-транспортных механизмов;
 - подбор и расчет устройств безопасности.

Для предупреждения аварий подъемно-транспортные машины снабжают ограждениями, устройствами безопасности и сигнализаторами.

Легкодоступные и находящиеся в движении части ПТМ могут являться причиной несчастного случая, поэтому они должны быть закрыты прочно укрепленными металлическими съемными ограждениями, допускающими осмотр и смазку.

Обязательному ограждению подлежат:

- зубчатые, цепные, червячные передачи;
- валы механизмов ПТМ, расположенные в доступных местах;
- соединительные муфты, расположенные в местах прохода;
- барабаны, расположенные вблизи рабочего места крановщика или прохода;
- ходовые колеса кранов (за исключением ПТМ на железнодорожном ходу) и тележек;
- голые токоведущие части электрооборудования.

Все устройства безопасности ПТМ можно подразделить на устройства, отвечающие за весовые и нагрузочные характеристики, и устройства, отвечающие за передвижение груза.

К первой группе устройств можно отнести тормоза и остановы, ограничители грузоподъемности и грузового момента, противоугонные устройства. Ко второй группе - ограничители высоты подъема крюка, ограничители пути, буферные устройства, ограничители подъема стрелы.

Тормоза подразделяются:

- по назначению на стопорные (останавливающие механизм) и спускные (ограничивающие скорость подъема-опускания в определенных пределах);
- по конструктивному исполнению рабочих элементов на колодочные, ленточные, дисковые, конусные;
- по принципу действия на автоматические (замыкающиеся при отключении двигателя механизма) и управляемые (замыкание которых производится при воздействии на орган управления тормозом).

Остановы используют для удержания груза на весу. Простейшие из них - храповые, роликовые, эксцентриковые.

Ограничители грузоподъемности (ОГП) и грузового момента (ОГМ) используются для автоматического отключения механизмов подъема и изменения вылета стрелы в случае подъема груза свыше 1,2Q, а для судовых и плавучих кранов - свыше 1,2Q (Q — грузоподъемность крана при данном вылете стрелы). ОГП используют, как правило, на мостовых кранах, ОГМ—на стреловых.

Краны, передвигающиеся по рельсам на открытом воздухе, необходимо оборудовать противоугонными устройствами (ПУ) от ветровой нагрузки. Можно выделить следующие виды ПУ:

- фиксаторы, соединяющие кран с подкрановым основанием;
- остановы, удерживающие ходовые колеса или рамы тележек;
- рельсовые захваты, зажимающие головку рельса.

Механизмы подъема с электроприводом снабжают концевыми выключателями, автоматически выключающими ток при подходе к крайнему верхнему (или нижнему) положениям.

Учебный вопрос 2. Основные требования пожарной безопасности.

В соответствии с федеральным законом «О пожарной безопасности», пожарная безопасность - это состояние защищенности личности, имущества, общества и государства от пожаров. Основные требования пожарной безопасности на рабочем месте содержатся в Правилах противопожарного режима в Российской Федерации, утвержденных постановлением Правительства РФ от 25 апреля 2012 г. №390 «О противопожарном режиме».

Приведем важнейшие требования Правил.

Для каждого объекта разрабатывается инструкция о мерах пожарной безопасности,

Люди допускаются к работе на объекте только после прохождения обучения мерам пожарной безопасности.

Обучение мерам пожарной безопасности осуществляется путем проведения противопожарного инструктажа и прохождения пожарно-технического минимума.

В складских, производственных, административных и общественных помещениях, местах открытого хранения веществ и материалов, а также размещения технологических установок вывешиваются таблички с номером телефона для вызова пожарной охраны.

На объекте с массовым пребыванием людей (кроме жилых домов), а также на объекте с рабочими местами на этаже для 10 и более человек разрабатываются и вывешиваются планы эвакуации людей при пожаре.

Объекты обеспечиваются огнетушителями в соответствии с приведенными в Правилах нормами.

Не разрешается проводить работы на оборудовании, установках и станках с неисправностями, которые могут привести к пожару, а также при отключенных контрольно - измерительных приборах и технологической автоматике, обеспечивающих контроль

заданных режимов температуры, давления и других регламентированных условиями безопасности параметров.

Использованные обтирочные материалы собираются в контейнеры из негорючего материала с закрывающейся крышкой. По окончании рабочей смены содержимое указанных контейнеров удаляется за пределы зданий.

На объектах запрещается:

- хранить и применять на чердаках, в подвалах и цокольных этажах легковоспламеняющиеся и горючие жидкости, порох, взрывчатые вещества, пиротехнические изделия, баллоны с горючими газами, товары в аэрозальной упаковке, целлулоид и другие пожаровзрыво- опасные вещества и материалы, кроме случаев, предусмотренных иными нормативными документами по пожарной безопасности;
- использовать чердаки, технические этажи, вентиляционные камеры и другие технические помещения для организации производственных участков, мастерских, а также для хранения продукции, оборудования, мебели и других предметов;
 - размещать в лифтовых холлах кладовые, киоски, ларьки и другие подобные строения;
- устраивать в подвалах и цокольных этажах мастерские, а также размещать иные хозяйственные помещения, если нет самостоятельного выхода или выход из них не изолирован противопожарными преградами от общих лестничных клеток;
- снимать предусмотренные проектной документацией двери эвакуационных выходов из поэтажных коридоров, холлов, фойе, тамбуров и лестничных клеток, другие двери, препятствующие распространению опасных факторов пожара на путях эвакуации;
- производить изменение объемно-планировочных решений и размещение инженерных коммуникаций и оборудования, в результате которых ограничивается доступ к огнетушителям, пожарным кранам и другим системам обеспечения пожарной безопасности или уменьшается зона действия автоматических систем противопожарной защиты (автоматической пожарной сигнализации, стационарной автоматической установки пожаротушения, системы дымоудаления, системы оповещения и управления эвакуацией);
- загромождать мебелью, оборудованием и другими предметами двери, люки на балконах и лоджиях, переходы в смежные секции и выходы на наружные эвакуационные лестницы;
- проводить уборку помещений и стирку одежды с применением бензина, керосина и других легковоспламеняющихся и горючих жидкостей, а также производить отогревание замерзших труб паяльными лампами и другими способами с применением открытого огня;
 - остеклять балконы, лоджии и галереи, ведущие к незадымляемым лестничным клеткам;
- устраивать в лестничных клетках и поэтажных коридорах кладовые и другие подсобные помещения, а также хранить под лестничными маршами и на лестничных площадках вещи, мебель и другие горючие материалы;
- устраивать в производственных и складских помещениях зданий антресоли, конторки и другие встроенные помещения из горючих материалов и листового металла;
 - устанавливать в лестничных клетках внешние блоки кондиционеров.

На объекте с массовым пребыванием людей (50 человек и более) разрабатывается инструкция о действиях персонала по эвакуации людей при пожаре, а также проводится не реже 1 раза в полугодие практических тренировок лиц, осуществляющих свою деятельность на объекте.

Пожарная безопасность объекта должна обеспечиваться системами предотвращения пожара и противопожарной зашиты, в том числе организационно-техническими мероприятиями.

Основным юридическим документом в части организации предупреждения пожаров на предприятии является приказ об обеспечении пожарной безопасности. Данным приказом устанавливается соответствующий пожарной опасности противопожарный режим, в том числе:

- определяются оборудованные места, специально отведенные для курения табака;
- определяются места и допустимое количество единовременно находящихся в помещениях сырья, полуфабрикатов и готовой продукции;
- устанавливается порядок уборки горючих отходов и пыли, хранения промасленной спецодежды;
- определяется порядок обесточивания электрооборудования в случае пожара и по окончании рабочего дня;
 - регламентируются:

- порядок проведения временных огневых и других пожароопасных работ;
- порядок осмотра и закрытия помещений после окончания работы;
- действия работников при обнаружении пожара;
- определяются порядок и сроки прохождения противопожарного инструктажа и занятий по пожарно-техническому минимуму, а также назначаются ответственные за их проведение.

Учебный вопрос 3. Действия неработающего при обнаружении задымления и возгорания, а также по сигналам оповещения о пожаре, аварии, катастрофе.

При обнаружении признаков пожара в здании, помещении (задымление, запах гари, повышение температуры воздуха и др.) необходимо немедленно сообщить о пожаре в пожарную охрану по телефонному номеру 01, 112 или 4-25-85.

При передаче сообщения четко и внятно назвать адрес объекта, место возникновения пожара и сообщить свою фамилию. После передачи сообщения необходимо принять меры по эвакуации людей и тушению пожара.

Эвакуация людей - первоочередное мероприятие при возникновении пожара. К тушению пожара следует приступать только в случае, если нет угрозы для жизни и здоровья и существует возможность в случае необходимости покинуть опасную зону.

При угрозе жизни необходимо покинуть опасную зону, плотно прикрыв за собой двери горящего помещения.

Не открывайте без нужды окна и двери, которые обеспечат поступление в зону горения свежего воздуха, что приведет к мгновенному развитию пожара.

В задымленном помещении необходимо продвигаться ползком или пригнувшись, нос и рот прикройте мокрым платком, полотенцем, тканью.

Если нужно пройти горящее помещение, накройтесь с головой мокрым покрывалом, плащом, куском плотной ткани. Дверь в горящее помещение открывайте осторожно, во избежание вспышки пламени, от быстрого притока свежего воздуха.

Если выйти из здания уже нет возможности, оставайтесь в помещении. Закрытая и хорошо уплотненная дверь надолго защитит от опасной температуры дыма. Во избежание отравления продуктами горения закройте щели дверей и вентиляционные отверстия мокрой тканью (одежда, шторы). Вывесьте в окно кусок светлой ткани, сигнализирующий о наличии в этом помещении людей. Криками о помощи привлекайте внимание прибывших пожарных.

Если загорелась одежда, ложитесь на пол и, перекатываясь, сбивайте пламя. Бежать нельзя - это приведет к развитию горения одежды.

Обнаружив, увидев человека в горящей одежде - попытайтесь его повалить, набросьте на него пальто, покрывало или плотную ткань и плотно прижмите. Затем снимите одежду, осмотрите пострадавшего, при необходимости окажите помощь. Порошковым огнетушителем горящую одежду на человеке тушить нельзя.

При самостоятельном тушении пожара будьте крайне осторожны - может произойти мгновенное распространение огня, взрыв, обрушение конструкций. Обязательно определите и выберите путь и способ эвакуации или спасения, наикратчайший путь наружу здания.

Пожар нужно тушить не по дыму, а только в зоне горения, т. е. огнегасящие вещества направляйте в место наиболее интенсивного горения (на горящую поверхность), а не на пламя.

Если горит вертикальная поверхность, воду подавайте в верхнюю часть; в помещении применяйте распыленные струи, что способствует осаждению дыма и снижению температуры.

При горении электропроводки или электроприборов, сначала обесточьте их (выключите рубильники), а потом приступите к тушению. Используйте порошок, песок.

Горючие жидкости, бензин, дизтопливо, керосин необходимо тушить пенообразующим составом, песком, землей, небольшие очаги накрыть брезентом, покрывалом.

При тушении используйте огнетушители, пожарные краны, а также воду, песок и другие подручные средства. Старайтесь не допустить распространение огня на соседнее оборудование, конструкции, мебель и т.п.

В здании, в котором произошел пожар, следует отключить электроэнергию (за исключением систем противопожарной защиты), выполнить другие мероприятия, способствующие предотвращению развития пожара и задымления помещений. Прекратить все работы, кроме связанных с ликвидацией пожара.

Прибывшее подразделение пожарной охраны следует встретить и указать место пожара.

Эвакуировавшиеся из здания работники собираются в заранее условленном месте, где старшие проводят подсчет и сообщают руководству о количестве эвакуированных и отсутствующих (оставшихся в здании).

При объявлении эвакуации в случае аварии на производстве выходить с территории промышленной площадки необходимо перпендикулярно ветру, на расстояние не менее 300 метров, надев предварительно первичные средства защиты органов дыхания, либо закрыв рот и нос мокрыми кусками ткани (носовыми платками).

Места сбора работников должны быть определены заранее, практические навыки эвакуации в случае пожара, аварии на производстве отрабатываются при проведении ежегодных тренировок,

В качестве наглядного примера последствий пожара в здании с массовым пребыванием людей можно рассмотреть пожар в ночном клубе «Хромая лошадь», произошедший 5 декабря 2009 г. в Перми и повлекший смерть 156 человек и тяжкий вред здоровью 64 человек.

Пожар произошел в ночь с пятницы на субботу во время празднования восьмилетия со дня открытия клуба. В здании собралось около 300 человек (считая персонал), несмотря на то, что, согласно официальным документам, клуб был рассчитан на 50 посадочных мест. По основной версии, пожар был вызван неосторожным применением пиротехники в клубе.

В помещении клуба был организован фейерверк из так называемого холодного огня. Согласно основной версии, возгоранию способствовала небольшая высота потолка и имевшийся на нем декор из ивовых прутьев и холста.

Ударившие в потолок искры привели к его возгоранию. Быстрому распространению огня способствовали использованный вопреки строительным нормам пенопласт (из-за жалоб жителей дома клуб решили звукоизолировать, хотя пенопласт не служит звукоизоляционным материалом и должен применяться только внутри конструкций), пластмассовая отделка стен, а также скопившаяся на потолке пыль. Кроме того, горящая пластмасса начала выделять высокотоксичный дым, содержавший синильную кислоту. Ведущий шоу-программы, заметив пожар, призвал посетителей покинуть помещение, но эвакуация осложнялась переполненностью помещения, обилием мебели и узким дверным проемом основного выхода (вторая створка двери не была открыта при эвакуации). Во время пожара в помещении клуба погас свет, аварийное освещение отсутствовало, началась паника и давка со всеми вытекающими из этого последствиями.

Непосредственно в ходе пожара и сразу после него, в результате ожогов, отравления высокотоксичным дымом и давки погибло 111 человек. В последующие дни в больницах умерло еще 45 человек.

По заключению следствия жертвы пожара погибли преимущественно из-за отравления угарным газом и продуктами горения.

Руководитель занятия	
----------------------	--